COPYRICHT 1922

BY LYMAN-RICHEY SAND CO.

$$
\begin{gathered}
A+40 \\
.28
\end{gathered}
$$

$$
\cdot
$$

$I \mathbb{N} D X$

Experiments on Nebrasiza Pit-Run Grevels byOmana Testing Leboratories under directionof A.C.Arend, Omiha City Engineer -..-...-- Page I
Physical Characteristics of Agregates Page 4
Compression Strengths at end of 28 days .-. Page 4
Bulging Effect of Water on Sand \& Gravel--- Page 6
Relstion of Compressive Strength to fineness
Keport by Modieski \& engier on Compressive strength Page 9
Dept. of Agriculture Screen Anslysis snd compressive strength tests -.-----.-.-.---- Page 10
Compressive strenoth tests by Clark F. Wici-ey on Schuyler and $゙ r$ emont-Ames Projects--- Page 12
Omaha City Engineers void and Compressive strength tests Page 14
Limestone anả Sand-bravel comparisons by Omana 'lestirig Laboretories Page 15
Comparative compilations of tests by Iyman- RicheJ Send Co. Page 17
Discussion of the Concrete Yield for variouscombinations of Nebraska Sands and Gravels,by Western Laboratories, Inc. and conclusionsdrawn from same ----------------------------- Page 19

INTRODUCTION.

As is well known to most of us many experiments have been performed by Frof. R. W. Crum of Iowa, and Prof. Duff Abrams of the Lewis Institute of Technology, on proportioning crushed stone, screened gravel and pit-run gravel in the designing of a concrete mixture. Prof. Crum has come to the conclusion that any gravel may be used in concrete provided the cement is varied with the sieve analysis of the gravel on hand. Therefore the engineering department of the City of Omaha has deemed it of value to experiment with Nebraska gravels in order to determine which sieve should be used as the dividing line between sand and gravel and then to determine what relative amounts or these would produce the best concrete. The experiments were conducted by the Omaha Testing Laboratories under the direction of Mr. A. C. Arend, City Engineer.

The experiments were divided into four series. In Series No. 1 the No. 10 sieve was used as the dividing line between the fine and coarse particles. Table No. 3 shows in what proportions the fine and coarse materials were mixed. The cement used with each mixture is also shown on the same table.

In series No. 2 and 3, the No. 8 and No. 4 sieves were used respectively to separate the pit-run gravel into fine and coarse. The mixtures are shown in table No. 4.

Series No. 4 consisted of five pit-run gravels, which were used without remixing in any way. In one of these gravels, we used more water than necessary and one of them was not as well graded as the rest. Table No. 5 gives the mixtures used.

For the first three series a pit-run gravel was separated and recombined in the proportion shown. The pit-run gravels used in the last series were obtained from local yards and represented several pits from which Omaha gets its supply.

The specific gravity, weight per cubic $\hat{\text { root and }}$ voids were determined by the methods adopted by the American Society of Testing Materials. The voids were calculated from the weight per cubic foot and the specific gravity. In this connection we wished to check up a device which has been used by some laboratories. It consists of two cubical boxes arranged one above the other and connected by a rubber tube. The water from the upper box rises through the gravel in the lower box. When the water appears at the top of the gravel, the per cent of voids is read directly on a scale on the upper box. We found that for ordinary pit-run gravels the actual voids by this device checked very well with the theoretical, but with fine sands the results are low. That is due to the fact that the water rises so slowly that capillary action interferes with the displacing of the air bubbles. In any case this device tends to give low results.

The test pieces were made in cylindrical molds 4"x8". Enough water was used to produce a mortar which when piled into a cone, would flatten slowly. A tapered glass rod was used to rod the
concrete while the molds were filled.
The molds were capped with glass plates.

The test pieces were made and stored in a room having a temperature of about 70 degrees F. They were removed from the molds 24 hours after they were made, weighed and immersed in water for 14 days, after which they remained in air till broken. The gravel used. was air dried, the weight of a cubic foot of cement was taken as 94 pounds.

Only the 28 day compression test was made. Each value given in the tables is the average of three or more tests.

The Cement used passed all the tests.

THE RESULTS.

Table No. 1 shows the physical characteristics of the sand and gravel mixtures used. For convenient reference each mixture was given a number. Table No. 2 gives the characteristics of sand and gravels in general.

In taible No. I we notice that the weights per cubic foot of gravel aggregates are unusually high. The results are accounted for by the fact that we used the ageregates in compact form. The so called loose volvme method would not give uniform results.

The sieve analysis given in this table show that Nebraska pit-run gravels are graded fairly well. The amount passing the No. 100 sieve is less than 2%. The amount retained on the No. 4 sieve is about 35% of the amount retained on the No. 10 sieve.

In tables 3,4 and 5 are tabulated the results of compression in pounds per square inch. With but two exceptions all mixtures where one part of cement to three parts aggregate was used the compression strength produced was more than 4000 pounds per square inch. As our testing machine did not register above 4167 pounds per square inch, all results above this figure are marked "plus".

The results indicate that the strength increases as the coarseness of the aggregate increases, but the increase is not marked until we reach a point where more than 50% of the aggregate is retained on the No. 10 screen. Theoretically the mixture in which the sand and gravel are in equal amounts should give the maximum strength, because this mixture has least voids but coarser mixtures actually do give more strength because they require less water.

In Table No. 5 we notice that two of the gravels gave comparatively low results. In one case, $4-B$ the gravel is not well graded and the other case, 4-D we used water in excess.

Curve B was constructed from series 1 and 4 , table 3 and 5. These curves show quite clearly the relation vetween the material retained on the No. 10 sieve and the resulting compression strength. Curve C was constructed from series 2 and 3 . It shows the relation between material retained on the No. 4 sieve and the resulting compression strength.

The results of these experiments indicate that to get the strongest concrete the aggregate should contain 50 to 60% of material retained on the No. 10 sieve, and that 15 to 25% of the entire aggregate should be retained on the No. 4 sieve.

In all the mixtures used in these experiments, we noticed that the weights per cubic foot of the green concrete were not as high as they should be theoretically. It occurred to us that the bulging effect of water on dry sand and gravel might furnish an explanation. Curve A shows the increase in volume caused by the addition of water to the dry aggregate. As was anticipated, a finer gravel bulges more than a coarse one with the same amount of water. Surface Tension is given as the cause. When enough water is added to thoroughly wet and cover the aggregate, the volume shows no increase. This fact was also anticipated because at this point, Surface Tension is reduced to a minimum and the particles move freely.

It is possible to approximate the amount of water in aggregate by visual inspection. If the particles appear damp the percent of water by weight is from 1 to 2; if damp and sticky, 2 to 5: if the water is visible in globules, 5 to 10; and if the water begins to separate, 10. Above 10 percent the water separates easily from the aggregate. The gravel as used on the work generally contains from a trace, to 7% of water.

From the above results it is easy to explain why the green concrete is not denser than is found by experience. If we take any pit-run gravel mixture and note the amounts of the various materials entering into a cubic foot of the green concrete, we find that the increase in volume is governed almost exactly by the bulging effect of water on the aggregate used. As an example take mixture A-6, from Series No. l. In making this mixture we used a cubic foot of aggregate weighing $116.6 \mathrm{lbs} ., 14.5 \mathrm{lbs}$. cement and 13 lbs . of water. The total material used was 144 lbs . The volume of green concrete was 1.055 cubic foot. The green concrete weighed 136 lbs. per cubic foot. Therefore the increase in volume was 5.5% and since the aggregate had a voidage of 28% the decrease in volume should have been 11%. Therefore this mixture increased the volume by 16.5%. After allowing 20% of the water for the cement it leaves us an aggregate containing 8.7% water, which, according to the curve has a bulge of about 17%. Any other mixture may be figured in the same manner.

This shows to us that although it is desirable to use as little water as possible in making concrete, at the same time, we are producing a concrete which does not have the maximum weight per cubic foot.

It is also evident from the Curve A that the contractor who uses wet gravel by volume in proportioning concrete, is really using a richer cement mixture than he intends to. In case of a fine pit-run gravel, where the specifications call for 1 to 5 mixture the contractor will actually produce about a 1 to 4 mixture if he uses wet material.

PHYSICAL CHARACTERISTICS OFAGGREGATES

ERIES	MIXTURE	NUMBER	\%VOIDS	WEIGHT PER CU.FT.	SPECIFIC gravity	P. 100	17.100	R. 50	R.30	R. 10	R. 8	R. 4
	80	1	28.05	116.65	2.60	2.48	97.52	63.13	48.0	20.0		6.08
1-B	70-30	2	27.33	117.81	2.60	2.17	9783	85.28	72.0	30.0		9.12
	60-40	3	27.18	118.05	2.60	1.86	98.14	87.38	76.0	40.0		12.16
1-D	50-50	4	24.99	121.60	2.60	1.55	98.45	89.48	80.0	50.0		15.20
$1 \cdot E$	40-60	5	26.79	118.69	2.60	1.24	98.16	91.59	84.0	60.0		1824
2-A	85-15	6	26.44	119.25	2.60	2.34	97.66	81.13	72.2	28.6	15.0	6.10
2-B	75-25	7	26.84	118.61	2.60	2.06	97.94	83.35	75.47	37.0	25.0	10.16
$2 \cdot C$	65-35	8	26.53	119.00	2.60	1.79	98.21	85.57	78.74	45.4	35.0	14.2
3-R	-20-10.	9	24.92	121.72	2.60	1.95	9805	88.57	79.66	43.3		100
3-B	$\therefore-20$	10	24.07	123.10	2.60	1.74	98.26	89.84	81.92	49.6		20.0
3-C	70-30	11	25.43	120.79	2.60	1.52	98.48	91.11	84.18	55.9		30.0
$4-4$	PLATTERIVER	12	28.49	119.10	2.67	1.00	99.00	91.10	83.20	48.0		13.4
4.B	"	13	30.09	113.47	2.60	1.25	98.75	96.35	93.60	59.3		14.9
4.C	"	14	27.84	118.33	2.63	2.00	98.00	89.90	77.65	35.5		8.2
4-0	$"$	15	26.45	120.61	2.63	3.60	96.40	78.00	61.75	26. 1		7.9
$4-E$	"	16	29.57	117.26	2.67	0.75	99.25	94.40	89.20	51.2		15.8

ReLE No. BRIES COMPRESSION STRENGTHS ATEND OF 28 DAYS.
;RRVEL SUBDIVISION YUT TR OF SERIES
$-$

$\begin{aligned} & \text { IRRVEL } \\ & \text { YUT TR } \\ & \hline \end{aligned}$	SUBCIVISION OF SERIES	BY WEIGHT			BY WEIGHT		
		P. 10	P. 8	P. 4	R. 10	R. 8	R. 4
1	1-A-3	80			20		
1	1-A-4	80			20		
1	1-A-5	80			20		
1	1-A-6	80			20		
2	1-8-3	70			30		
2	1-8-4	70			30		
2	1-8-5	70			30		
2	1-B-6	70			30		
3	1-C-3	60			40		
3	1-C-4	60			40		
3	1-C-5	60			40		
3	1-6-6	60			40		
4	1-D-3	50		,	50		
4	1-0.4	50			50		
4	1-0-5	50			50		
4	1-0-6	50			50		
$5 \square$	1-E-3	40			60		
5	1-E-4	40			60		
5	1-E. 5	40			60		
5	1-E-6	40.			60	page	$4=$

BY VOLUME BY WEIGHT WTPERCUF
CEMENTTO \% WATERTO OF FIME AND GGEEN CON STRENGT
AGGREG ATE AGGREGATE CORRSE AGG. CRETE. LEG.PER.SQ.

1 TO 3	9.34	116.65	140.40	
1 TO 4	11.11	116.65	139.32	2610
1 TO 5	10.73	116.65	135.08	2105
1 106	10.24	116.65	137.16	1660
1 TO 3	9.12	117.81	142.56	4
1 TO \uparrow	10.00	117.81	140.40	2750
1 105	10.00	11781	138.24	220
1 T06	10.35	117.81	135.08	1700
1 T03	10.00	118.05	142.56	4167
1 T04	9. 52	118.05	141.48	2904
1 TO5	9.58	118.05	140.40	226
1706	10.00	118.05	139.32	176
1 TO 3	9.12	121.60	146.88	416
1 T04	9.33	121.60	145.26	3070
1 TO 5	8.85	121.60	142.56	242
1 T06	8.85	121.60	140.40	1600
1 TO 3	8.42	118.69	147.96	4167
1704	8.33	11869	145.80	380
1705	8.27	118.69	144.72	292
1 T06	8.24	11869	141.48	23

GENERAL GHARAC.TERISTICS OF SANDS \& GHAVLL

PRSS $10-100 \%$ PASS $100-3.17 \%$	112.13	3	3.14	2.60
KET. $10-100 \%$ PASS	$2-100 \%$	104.30	35.60	2.60
PRSS	$8-100 \%$ PASS $100-2.75 \%$	113.02	30.30	2.60
RET.	$8-100 \%$ PASS	$2-100 \%$	106.30	35.00
PASS $4-100 \%$ PASS $100-2.17 \%$	117.32	28.46	2.60	
RET. 4-100 \%PRSS $2-100 \%$	103.00	37.25	2.60	

GRAVEL NUMBER	subcavision OF SERIES	AGGREGRTE						grvolume CEMENTTO AGGREGATR	BYWEIGHT PERCENT WATER TO AGGREらATE	WTPPERCU.FT of fine and COARSE hggregate	WTPERCU. FT GREEN comcrete	COMPPESSIOI STRENGTH LBS. PER SQ INCH.
		BY WEIGHT			BY WEIGHT							
		P. 10	P. 8	P 4	R. 10	R. 8	R. 4					
6	2-9		85			15		1 TO 4	9.6	11925	140.94	3201
7	2-8		75			25		1 TO4	9.8	118.61	140.94	3291
8	2-C		65			35		1 TO 4	9.8	119.00	142.56	3.400
SERIES NC 3.												
\bigcirc	3-A			90			10	1 TO4	9.1	121.72	142.0	3285
10	3-8			80			20	1 TO 4	9.1	123.10	$1 .+5.8$	3620
11	$3-C$			70			30	1 TO4	9. 3	120.79	145.8	4138

THBLE NO 5 SERIESNO 4

COMPRESSION STAENGTHS ATEND OF 28 DAYS

CRAVEL NUMBER	PITS	SUBDIVISION OF SERIES	BY VOLUME CEMENT TO RGGREGATE	BY WEIGHT \% OF WATER TO RGGREGATE	WTPPER CU.FT. OFFINE \& CORRSE AGGREGATE	WT.PERCUFT OF GREEN CONCRETE	COMPRESSIO STRENGTH
12	PLATTEGIVER	4-A-3	1 TO 3	9.3	119.1	145.80	$4167+$
12	"	4-A-4	1 TO4	9.1	119.1	142.56	3333
12	\cdots	4-A-5	1705	8.85	119.1	143.64	$25+6$
12	"'	4-R-6	1706	8.82	119.	142.55	2046
13	\because	4-B-3)	1 TO 3	95	113.47	147.51	3700
13	"	4-8-4 F	1704	9.4	113.47	144.66	2300
13	"	4-8-5 M	1 TO 5	8.8	113.47	139.32	2000
13	"	$4-5-6)$	1 106	8.5	113.47	136.71	1638
14	\prime	4-c-3	1 TO 3	10.0	118.33	, 39,95	4000
14	11	4-c-4	1704	10.0	116.33	137.63	2950
14	"	$4-c-5$	1 TO5	9.5	118.33	135.32	2300
14	"	$4-c-6$	1 TOE	27	11833	135.08	1780
15	"	4-0-3) 0°	1 TO3	11.6	120.6)	138.78	3315
15	"	4-0-45	1704	11.9 WET	120.61	135.08	1533
15	"	4-D-5	1 TOS	11.5	120.61	13508	1230
15	"	$4-D .6$	1 T06	11.7	120.61	134.00	712
16	"	$4-E-3$	1 TO3	11.5	117.26	142.56	4167 +
16	n	4-E-4	1 TO4	10.5	11726	$1+2.56$	7000
16	"	4-E-5	1105	10.4	117.20	14094	2580
16	1	4-E-6	1 To@a	-570	11726	135.08	1750

The Bulging effect of water on éand \& Grhivel.
"A"

Curves made from Series No. 1 \& 4. "B"

CWRVE MADE FROM SERIES NO. 283

MODJESKI \& ANGIER

INSPECTING CIVIL ENGINEERS.
Chicago, Ill. Aug. 19, 1915.
Gentlemen:
We are pleased to hand you herewith results of our twenty eight day tests on concrete materials for the World Herald Building, Omaha, Nebr.,

Mix 1:2:4 Dewey Cement, Platte River Sand \& Crushed Stone
Compressive Strength

7 Days
Per Sq. Inch
1480 Lbs
1630 Lbs
1555 Libs Average

28 Days
Per Sq. Inch
1790 Libs
2090 Libs
1940 Lbs Average

Mix 1:4 Dewey Cement --Sand-Gravel
Compressive Strength

7 Days
Per Sq. Inch
1940 Lbs
2050 Lbs
1995 Lbs Average

28 Days
Per Sq. Inch
3100 Lbs
2850 Lbs
2975 Average

The figures given above are conclusive evidence that your sand-gravel mixture is superior for concrete purposes to the Platte River sand with crushed stone mixture; confirming our opinion expressed in seven days report.

Yours very truly,
MODJESKI \& ANGIER
(Signed) J. J. Reeves, Mgr.

BUREAU OF PUBLIC ROADS.

Washington, D.C.

June 23, 1919.

REPORT ON SAMPLE OF SAND-GRAVEL

Laboratory No. 14418
Name of Material, SAND-GRAVEL
Identification marks, 1930495 \& 96 ON BAGS.
SUBMITTED BY LYMAN-RICHEY SAND CO., FREMONT, NEBR.
Sampled June 9, 1919 Received June 13th, 1919.
Sampled from CAR.
Quantity represented, 360 ACRES, 30 FEET DEEP.
Source of material, Fremont, Dodge County, Nebraska.
Location used or to be used, NEBRASKA FEDERAL AID PROJECT NO. 81.
Examined for USE IN WEARING COURSE, ONE-COURSE CONCRETE PAVEMENT.
TEST RESULTS

SAND
(echanical Analysis)

GRAVEL
(Mechanical Analysis)

Total 100.0: Total 100.

Loss by washing (Silt \& Clay) 0.4\%
Character of material:
Sample consists essentially of rounded fragments of granite, quartz and quartzite with a large amount of sub-angular quartz sand.
(Signed)
P. W. J. Milson

Acting Director.

UNITED STATES DEPARTMENT OF AGRICULTURE.
BUREAU OF PUBLIC ROADS.
Washington, D.C.
June 23, 1919.

Laboratory No. 14418
Name--SAND-GRAVE L
Identification marks, 1930495 \& 96 ON BAGS. SUBMITTED BY LYMAN-RICHEY SAND CO. FREMONT, NEBR. Sampled June 9, 1919 Received June 13th, 1919. Sampled from CAR. Quantity represented, 360 ACRES, 30 FEET DEEP. Source of material, Fremont, Dodge County, Nebraska. Location used or to be used, NEBRASKA FEDERAL AID PROJECT NO. 81. Examined for USE IN WEARING COURSE, CEMENT CONCRETE PAVEMENT.

TEST RESULTS

Crushing strength, $6^{\prime \prime} \times 12^{\prime \prime}$ cylinders, age 7 days.

Total Load, Lbs.

A	B	
58350	57780	
65940	$\underline{58180}$	
62145	57980	Average

A- Proportion by volume

B- Proportions by volume

Unit Load, Lbs. per square inch

A	B
2065	2040
2330	2060
2198	2050

Average
(1 part cement
(3 parts No. 14418 (Sand-gravel)
(1 part cement) Accepted
(1) $\frac{1}{2}$ parts Potomac River Sand) as
(3 parts Potomac River Gravel) Standard
(Signed) P. W. J. Milson Acting Director.
Page -11-

STATE of NEBRASKA

Samuel R. McKelvie, Governor LINCOLN

February 14, 1921.

Lyman-Richey Sand Co.,
Omaha, Nebr.

> Attention: L. C. Curtis.

Gentlemen:
In reply to your letter of February loth.
asking for the average of the compression tests made on the concrete used in the concrete pavement of Project 58-A Schuyler-Platte River, you will find herewith table stating the average of the 28 day tests for the various months.

$1: 3$ Mix Month	Average Compressive Strength
June	3472
July	3115
August	3733

> Yours very truly,
> Clark E. Mickey
> Consulting \& Testing Engineer.

CEM: FP.
Page -7.2-

STATE of NEBRASKA Samuel R. McKelvie, Governor LINCOLN

February 14, 1921.

Lyman-Richey Sand Co.,
Omaha, Nebr.
Attention: L. C. Curtis.
Gentlemen:
In reply to your letter of February loth.
asking for the average of the compression tests made on the concrete used in the concrete pavement of Project 81, from Fremont to Ames, you will find herewith table stating the average of the 28 day tests for the various months.

1:3 Mix

Month
May
June
July
September

Average Compressive Strength

$$
3464
$$

$$
3589
$$

$$
3644
$$

$$
3130
$$

Yours very truly,
Clark H. Mickey
Consulting \& Testing Engineer.
CEM:FP.
Page -13=
?

Voids

| Omaha test (3 samples) | (28.33) |
| :--- | :--- | :--- |
| Omaha test (3 samples) | (25.52) |\quad Average 26.92.

Silt Tests.

From 0.9% to 2.78% volume measure. (Allowable, 7% by volume.)

Colorimetric Test.
Practically clear in each test. Hence free from organic matter.

Crushing Tests
8x8x16 Cylinders
Ends set in Plaster of Paris.

Cement Sand-Gravel 1-3 Extra Strong	$\begin{gathered} 72 a . \\ \text { sq.in. } \\ 3187 \end{gathered}$	$\begin{gathered} 28 \mathrm{da} . \\ \text { \# sq.in. } \\ 4260 \end{gathered}$	$\begin{gathered} 105 \mathrm{da} . \\ \# \mathrm{sq.} \text { in. } \\ 4516 \end{gathered}$
1-31 For Concrete Paving	2300	3497	4500
1-4 For Heavy Sidewalks Heavy Wails	1866	2974	3800
1-5 For Heavy Traffic Paving Base	1048	2482	3037
l-6 For Light Traffic Paving Base	554	1347	2003

.-3 all +51

$$
\begin{aligned}
& a \underline{d n}-112+2003
\end{aligned}
$$

W. H. Campen, Manager.

THE OMAHA TESTING LABORATORIES, INS.
OMAHA, NEBR., Sept. 15th, 1921.
RELATIVE STRENGTH OP CONSRETE MADE FROM NEBRASKA CRUSHED IIMESTONE AND SAND GRAVEL.

By W. H. Campen

These experiments were conducted to study the concrete made using limestone in one case and sand-gravel in the other. The object in view was to determine the strengths produced by both kinds of concrete, and also to observe the yields. A numoer of Nebraska Civil Engineers engaged in paving work give the contractors the option of using one part cement, two and onehalf parts sand and five parts crushed stone by volume or one part cement to five parts sand-gravel by volume. The main part of our experiments consisted of determining whether or not the mixtures were actually equal in strength.

We selected two ordinary crushed limestones, one from the Iouisville quarry and the other from the Weeping Water quarry. The sand-gravel used was taken from a pile in Omaha and was being used for the construction of concrete base. The sand-gravel had been shipped from the Fremont pit. The stone weighed 90 lbs per cubic foot and contained 47% voids. The sand-gravel weiphed lol lbs. per cubic foot (loose volume) and contained 25% voids. Its screen analysis was as follows: Retained on a \#lo screen, 56\%; retained on a $\# 4$ screen, l4\%; passing a \#luU screen, 1%; Tested cement was used.

The actual experiments consisted of making test cylinders $4^{\prime \prime} \times 8^{\prime \prime}$, of 1 to 5 , 1 to $5 \frac{1}{2}$ and 1 to 6 , using sand-gravel, and of 1 to $2 \frac{1}{2}$ to 5 using the two limestones. Six test pieces were made of each mixture and these were broken at the end of 7 and 28 days.

As the sand-gravel is often used in a damp condition, test pieces were made from material to which water had been added before proportioning.

The results of the experiments are shown in the following table:

Haterial used: Mixture: Volume yield: wt.Green concrete

Sand gravel (dry)
Sand gravel (dry)
Sand gravel (dry)
Sand gravel (wet)
Sand gravel (wet)

1 cement no change	143	
5 sand gr		
1 cement no change	142	
$5 \frac{1}{2}$ sand gr		
1 cement no change	141	
6 sand gr		
1 cement	16% decrease	141
5 sand gr		
1 cement 16% decrease	141	
$5 \frac{1}{2}$ sand gr		

Compression
lbs per sq.in. 7 das. 28 das. $788 \quad 2128$
$990 \quad 1833$
500
1168
932
2310
7672011

continued:

The results as anticipated by the author show two distinct features; viz, damp sand-gravel decreases the concrete yield by 16% computed on the volume of sand-gravel taken and the compression strength is greater than the corresponding mixture in which dry gravel was used. The volume shrinkage shows that a 1 to 5 mixture using damp gravel gives a concrete containing about 24% cement.

From the above data it is evident that to obtain a concrete equivalent in strength to $21,2 \frac{1}{2}, 5$ stone mixture one may use a 1 to $5 \frac{1}{2}$ or even a 1 to 6 gravel mixture.

COMPARISON OF TESTS
1:2:4--Stone Mix28 days
Lodkeski \& Angier, Chicago, 1915
$1: 2 \frac{1}{2}: 5-$ Stone Mix

Omaha Testing Laboratories, 1921

1:4 Sand-gravel
Mod.jeski \& Angier, Chicago, 1915
Omaha City Engineer 1915-6
Omaha Testing Laboratories, 1921

1:5 Sand-gravel
$\begin{array}{ll}\text { Omaha City Engineer, } & 1915 \\ \text { Omaha Testing Laboratories, } & 1921\end{array}$
1:5 $\frac{1}{2}$ Sand-gravel
Omaha Testing Laboratories, 1921
1:6 Sand-gravel
Omaha Testing Laboratories, 1921

1416
1038 Average 1227\#

2975\#
2974\# 30ro\# Average 3006\# 2482留 2428\# Average 2455\#

2011\#

1342\# 1760\# 1800\#\#
2375\# Average 1804\#

LYMAN-RICHEY SAND CO.
 Omaha, Nebr.

1:4 Sand-gravel mix shows over 1000\#\# greater strength than 1:2:4 Stone mix.

1:5 Sand-gravel mix shows over 1200\# greater strength than 1:2 $\frac{1}{2}: 5$ Stone mix and over 500\# more than 1:2:4 Stone mix.

1:5 $\frac{1}{2}$ Sand-gravel shows nearly 800 \# greater strength than 1:2 $\frac{1}{2}: 5$ Stone mix and to be slightly stronger, or equal to 1:2:4 Stone mix.

1:6 Sand-gravel shows nearly 600\# more strength than 1:2 $\frac{1}{2}: 5$ Stone mix and within 200\# as great strength as 1:2:4 Stone mix.

November 15, 1921.
Mr . L. C. Curtis, General Sales Manager, Iyman-Richey Sand Company, Omaha, Nebraska.

Dear Sir:-

In compliance with your recent request I wish to submit the following brief summary of the purposes of the investigations of concrete we are now conducting and the information which should be obtained from these investigations.

The purpose of these investigations is to determine the physical properties of concrete that is actually being produced for concrete pavement foundations by the use of Nebraska gravel containing various proportions of material retained on the 10 -mesh sieve.

A large proportion of the determinations will be made upon samples that are prepared under actual working conditions which are common to concrete pavement base construction. A part of the samples being made under working conditions are being molded on the street on paving jobs at the time of construction. When taking these samples all the details of construction are left exactly as is common for this class of work and the samples are molded after the concrete is deposited on the subgrade and graded. These samples are molded in such a way that they are truly representative of the condition of the concrete in the base, that is the material is not tamped in the mold but simply placed within the cylinder and a thin strip passed round the inside of the mold to flush the material to the surface so that the outside of the sample is no more porous than other parts.

Other samples will be molded to the same consistency in the laboratory. The laboratory samples will be tested to determine their compressive strength, modulus of elasticity, coefficient of expansion and expansion due to water absorption. The purpose of the last group of tests is to determine the stress produced in the base due to changes in temperature and changes in moisture content when varying proportions of cement are used in the mixture. From the information thus obtained it will be possible to determine whether a mixture can be used which will have the proper compressive strength to withstand the stress produced by expansion and thus eliminate all heaving and crushing of the concrete base from that cause.

\qquad

工. C. C. \#2.

It is a fact that the modulus of elasticity of concrete varies with the proportions of the mixture, the modulus increasing with an increase in the cement content while the coefficient of expansion seems to be oractically the same for all mixtures. This being the case it may develop that a better concrete foundation for pavements may be produced by reducing the cement content of the mixture and thus reducing the modulus of elasticity which will in turn reduce the stress produced by changes in temperature. The compressive strength will necessarily be reduced but may still be great enough to withstand this stress. On the other hand the compressive strength may also be increased by changing the amount of material retained on the $10-m e s h$ sieve to some other proportion than is now in common use.

It is doubtless true that the proportion of aggregate retained on the 10 -mesh sieve should be varied for the various proportions of cement in order to produce the best concrete possible for that mixture. As an illustration, if the best results may be produced in 2 I: 3 mixture having fifty per cent of the aggregate retained on the lo-mesh sieve it is practically a certainty that such a proportion of aggregate retained on a lo-mesh sieve will not give the greatest strength in a l:6 mixture. When these investigations are completed it should be possible to state what the proportion of aggregate retained on the lu-mesh sieve should be to produce maximum strength for the various proportions of cement and aggregate under actual concrete foundation construction conditions.

Information on the 28-day strength tests on a $1: 5$ mixture laid for a pavement foundation should be complete by January 1,1922 while the laboratory investigations on various mixtures, prepared as outlined above, should be completed by April l, 1922, including 28day strength tests, determinations of modulus of elasticity and determinations of coefficient of expansion.

Other information incidental to these investigations will be obtained as progress is being made and will also be forwarded to you.

Yours truly,
WESTERN LABORATORIES,
By Roy M. Green, Mgr.

A DISCUSSION OF THE CONCRETE YIELD FOR VARIOUS COMBINATIONS OF

NEBRASKA SANDS AīD GRAVELS.

By
Roy M. Green, Manager, Western Laboratories, 132 North l2th St., Lincoln, Nebraska.

PURPOSE OF DISCUSSION. The purpose of this discussion is to show the effect of different amounts of moisture upon the volume of combinations of Nebraska sands and gravels and to show the concrete yields for these materials when measured by different methods and while containing various percentages of moisture. The weight of the aggregate necessary to produce one cubic foot of concrete from these materials will also be shown as well as the quantity used in making concrete of one inch Nebraska limestone and pit-run sand.

METHOD OF MAKING DETERMINATIONS OF WEIGHT PER CUBIC FOOT OF AGGREGATE. The method of making determinations of the unit weight of aggregate was the standard of the American Society for Testing Materials, C-20-21.

The equipment for this determination consists of a balance, cylindrical container lo-inches in diameter by ll-inches high, and a metal rod 3/4-inch in diameter and 18-inches long, tapered to a blunt point.

The cylinder is first calibrated by weighing it empty, then repeating the weight with the container filled with water. The test is made by introducing enough aggregate into the cylinder to fill it one-third full. The material is then tamped with the rod twenty-five times and more material added until the container is two-thirds full. The tamping is then repeated, allowing the tamper to go only as far into the material as the depth of the second layer. The cylinder is then heaped full and the tamping process repeated. The excess material is then struck off the top of the cylinder with the rod and the whole is weighed. From this data the weight per cubic foot of the material is determined.

In making the tests herein described the foregoing process was used and in addition determinations were made on the material when in a loose condition, the container being filled without any compaction whatever.

RESULTS OF DETERMINATIONS OF UNIT WBIGHT OF AGGREGATE. The following curves show the weight per cubic foot of different combinations of sand and gravel from the Platte and Loup Valleys (Columbus) when the percentage of moisture was varied through a wide range. The following proportions of sand and gravel were used in making these tests.
Page -21~

160				

PERCENT OF MOISTURE, BY WEIGHT
*
-
SLEIGHT DER CUBIC FOOT -POUNDS

PERCENT OF MOISTURE- BY WEIGHT

[^0]

PERCENT OF MOISTURE-BY WEIGHT

Page -31-

As an illustration of the results obtained by these determinations it was found that for a material having 80% passing and 20% retained on the 10 -mesh sieve (approximately pit-run) the weight per cubic foot loose and dry was found to be l09\#for Platte Valley material and lld\#for Solumbus material. The weights per cubic foot for the same materials dry and compacted, as described above, were ll5\# and ll9\# respectively. The weights per cubic foot, loose measure, for the same materials when swelled to their greatest volume by the addition of approximately 3%, by weight, of moisture were $89 \#$ and $90 \#$ respectively. In other words, in the case of the Platte Valley material there were ll5\#\# of gravel to the cubic foot, compacted, as compared with 86% of sand and gravel per cubic foot when loose and containing 3%, by weight, of moisture. In the case of the Columbus material there were ll9\# of material per aubic foot of dry and compacted aggregate as compared with only $87{ }^{4}$ of moist material. In other words, there was actually 33.7\% more Platte Valley material in the dry compacted measure than when loose and moist. In the case of the Columbus material there was 36.8% more material.

Somparing sand-gravel, that is material having 50\% passing and 50\% retained on the 10 -mesh sieve, it was found that the dry and compacted material weighed l2l\# per cubic foot in the case of the Platte Valley material and $126 \#$ in the case of the Columbus material. When moistened with approximately 3% of water, by weight, the same materials weighed $96 *$ and loz\# per cubic foot respectively. In other words, with the Platte Valley material there were I2l\# of aggregate, compacted, as compared with $93 \#$ per cubic foot when loose and containing 3%, by weight, of moisture. In the case of the Columbus material there were l26\# of material per cubic foot of dry and compacted aggregate as compared with 99\# of sand and gravel per cubic foot when loose and containing 3\%, by weight, of moisture. In other words, there was actually 30.1% more Platte Valley material in the dry compacted measure than the loose moist material. In the case of the Columbus material there was 27.4% more material.

SPEAIFYING PROPORTIONS BY VOLUME. In Viev of the fact that there is as much as 36.8% difference in the actual amount of sand and gravel in a unit volume, for certain commercial combinations, dependent upon the methol of measurement which is used, and since there is practically always at least 25% difference for any commercial Nebraska sand and gravel it should be apparent that it is impractical to specify the proportions of the concrete mixture by volume only. without further explanation including a statement of the minimun amount of cement allowable per unit volume of concrete. IN PLACE, and expect these specifications to be complied with in the field

$$
P_{\text {age }}-34=
$$

 1-2
 $-7+1+10+2+20$

 Th

 2 L Eexi $n=8 \times 1+0$ $\frac{2-2}{-2}+\frac{2}{2}$ $\cdot \mathrm{f}-\mathrm{H} \rightarrow+\mathrm{Cl}$

- $\quad-2+2$

 $\mathrm{H}^{3} \mathrm{C} 7 \mathrm{y}$
 $\pi \mathrm{KL}$

 Latisy

without working an injustice on one party to the contract. In order to be sure that the correct amount of cement is being used it is absolutely necessary to make the measurement in place because the volume of the aggregate changes so rapidly with changes in moisture content, as can be seen by an inspection of the curves for "Weight per Cubic Foot". Since a small change in moisture content produces a great change in volume and since the amount of moisture in the aggregate is never known at the time the measurements are made on the work it is absolutely impossible to be sure of obtaining the correct volumes by measurement. The volume should be approximated at the beginning of each piece of work, and afterwards checked in place, and future quantities of materials based upon such measurements.

The advantages to this method are that it makes it possible for all contractors to bid on work with the definite knowledge of exactly how much cement is expected. It also makes it possible to obtain the desired amount of cement in the work without causing friction be'tween the inspector and the contractor's foreman relative to the proper method of determining the amount of aggregate that should be used.\#

CONCRETE YIELD. Since there is such a great difference in the amount of aggregate contained in a unit volume of material as the result of a change in moisture content the resulting yield of concrete is greatly influenced by the condition of the aggregate at the time it enters the mixture. When the concrete is mixed to a given consistency, however, there is a certain weight of aggregate per uni volume of concrete regardless of the moisture contained in the aggregate at the beginning. Tests for yield were made upon concrete mixed to consistencies such that the fresh mixture showed a slump of from $1 / 2^{\prime \prime}$ to $1-1 / 2^{\prime \prime}$ and from 5" to 7 ". The following table shows the yield of concrete per unit volume of aggregate.
\#To the writers knowledge, this method of specification was first used in Nebraska on pavement work by Mr. H. H. Tracy, City Engineer, Norfolk, Nebraska.

Aggre- Mix, Approx-Cubic Feet of Soncrete from One Cubic Foot of gate $\mathrm{Re}-\mathrm{Parts}$ imate
tainea
by Agsregate.
on 10-
mesh
Sieve.

10\%	1:3	1	1:22	1.10	1.15	1.05	. 91	. 80
10\%	1:3	6	1.23	1.14	1.16	1.09	. 92	. 84
10\%	1:4	1	1.16	1.07	1.09	1.01	. 86	. 78
10\%	1:4	6	1.18	1.10	1.11	1.05	. 88	. 80
10\%	1:5	1	1.13	1.05	1.07	1.01	. 85	. 79
10\%	1:5	6	1:16	1.10	1.09	1.05	. 86	. 78
10\%	1:6	1	1.13	1.07	1.07	1.02	. 85	. 77
10\%	1:6	6	1.13	1.09	1.07	1.04	. 85	. 78
10\%	1:7	1	1.13	1.07	1.07	1.02	. 85	. 79
10\%	1:7	6	1.13	1.08	1.07	1.03	. 85	. 80
20\%	1:3	1		1.15		1.09		. 85
20\%	1:3	6		1.17		1.11		. 87
20\%	1:4	1		1.12		1.06		. 83
20\%	1:4	6		1.14		1.08		. 84
20\%	1:5	I		1.08		1.03		. 80
20\%	1:5	6		1.10		1.05		. 82
20\%	1:0	1		1.07		1.02		. 79
20\%	1:6	6		1.08		1.03		. 80
20\%	1:7	1		1.06		1.01		79
20\%	$1: 7$	6		1.08		1.03		. 81
30\%	I:3	1	1.18	1.15	1.15	1.09	. 85	. 87
30\%	1:3	6	1.21	1.19	1.17	1.12	. 87	. 90
30\%	1:4	1	1.14	1.12	1.10	1.00	. 82	. 85
30\%	1: 4	6	1.16	1.14	1.12	1.08	. 84	. 87
30\%	1:5	1	1.11	1.10	1.07	1.04	. 80	. 84
30\%	1:5	6	1.13	1. 12	1.09	1.06	. 82	. 85
30\%	1:6	1	1.10	1.09	1.06	1.03	. 79	. 83
30\%	1:6	6	1.10	1.10	1.06	1. 04	. 80	. 83
30\%	1:7	1	1.09	1.09	1.05	1.03	. 79	. 83
30\%	1:7	6	1.10	1.10	1.06	1.04	.79	. 83
40\%	1:3	1	1.18	1.14	1.12	1.09	. 91	. 88
40\%	1:3	6	1.21	1.15	1.16	1.11	. 93	. 89
40\%	1:4	1	1.14	1.11	1.08	1.05	. 87	. 85
40\%	1:4	6	1.15	1.12	1.09	1.07	. 88	. 86
¢0\%	1:5	1	1.10	1.07	1.04	1.02	84	. 83
40\%	1:5	6	1.13	1.08	I. 07	1.03	. 86	. 83
40\%	1:6	1	1.10	1.04	1.04	. 99	. 84	. 80
40\%	1:6	6	2.12	1.07	1.06	1.02	. 86	. 82
40\%	1:7	1	1.08	1.04]. 03	. 99	. 83	. 80
40\%	1:7	6	1.10	1.05	1. 04	1.00	. 84	. 81

?

Aggre- Mix, Approx-Cubic Feet of Soncrete from Cne Cubic Foot of gate Re- Parts imate
tained by Slump, Dry Compacted.
on lo- Vol- Inches. Colum- Platte
mesh vme. bus. Valley.

Aggregate.
Dry Loose.
Colum-Platt

- bus. Valley.

Wet Loose. Colum- Platte bus. Valley.
.93
.85
.89
.83
.85
.80
. 82
. 81
. 82
.81
.81
.85
.87
.81
.83
.79
.81
.78
.80
.80
.80

CONCRETE YIELD FOR COMBINATIONS OF ONE INCH BROKEN STONE AND PIT-RUN
SAND AGGREGATE.
Mix, Parts Approximate Cubic Feet of Concrete from One Cubic Foot by Volume. Slump, Inches. of Combined Sand and Stone Aggregate.

Dry Compacted.
Dry Loose

$1: 2: 3$	1
$1: 2: 3$	6
$1: 2: 3-1 / 2$	1
$1: 2: 3-1 / 2$	6
$1: 2: 4$	1
$1: 2: 4$	6
$1: 2-1 / 2: 4$	1
$1: 2-1 / 2: 4$	6
$1: 2-1 / 2: 5$	1
$1: 2-1 / 2: 5$	6
$1: 3: 5$	1
$1: 3: 5$	6
$1: 3: 6$	1
$1: 3: 6$	6
$1: 4: 5-1 / 2$	1
$1: 4: 5-1 / 2$	6

1.05	1.05
1.08	1.08
1.02	1.00
1.05	1.03
.99	.98
1.01	.99
.98	.97
1.00	.99
.98	.97
.98	.97
1.01	.99
.02	1.00
.96	.95
.98	1.06
1.02	1.00

\qquad
\ldots

It will be noticed that the concrete yield for the finer aggregates is greater than for the coarser materials. The yield is also greater for the richer mixtures. This is the natural result of the fact that the moisture swells the finer aggregate to a greater extent than the coarser materials and the greater amount of cement will, of course, increase the bulk of concrete if there is more than enough to fill the voids in the aggregate.

For most grades of material and proportions of cement and aggregate the yield of concrete is about the same as the volume of aggregate used, when measured dry and loose. In other words, if the mixture is to be made on a volume basis it should be based upon the dry loose volume of aggregate.

It is also interesting to notice that if the mixture is made on a basis of wet loose material that the shrinkage may be as great as 20%. This emphasizes what has already been brought out, namely, that specifications should not be drawn so as to simply call for a certain volume of cement to aggregate, but should also stipulate the actual amount of cement to be used in each unit volume of concrete in place.

According to the standard definition, "concrete yield" is the volume of concrete produced by one volume of aggregate MIXED AS USED. An inspection of the foregoing tabulation shows that the concrete yield of sand-gravel is greater, for many mixtures and just as great for all mixtures as the yield of an aggregate made up of oneinch stone and pit-run sand.

There has been a general impression among many contractors that the concrete yield produced by an aggregate of broken stone and sand is much greater than for sand-gravel materials, for two reasons. First, the volume of the sand-gravel used has been measured in a moist and loose condition, when the bulk is the greatest, The material will naturally show a shrinkage from that condition when afterwards measured, in place, in concrete. Second, the volume of the stone aggregate is taken as the original volume of material, rather than the volume of the mixed stone and sand, which should be used for comparison. The foregoing table shows the correct yield of a broken-stone (l" stone) and sand aggregate. The following table shows the erroneous conclusions that may be drawn in this connection, if the volume of the stone is taken as the original volume of the aggregate entering into a broken-stone-sand aggregate.

BROKEN STONE WITH PIT-RUN SAND.
Mix, Parts Approximate Concrete Pro-
by Volume. Slump, Inches. duced from
One Cubic Foot
of Stone, Cubic
Feet.

Cubic Feet of
Sand Used with
Each Cubic Foot

- of Stone. .66

1.33	.66
1.37	.66
1.22	.57
1.26	.57
1.16	.50
1.17	.50
1.18	.63
1.19	.63
1.16	.50
1.15	.50
1.25	.60
1.26	.50
1.13	.50
1.13	.73
1.38	.73

. 66
.57
.57
.50
. 50
.63
.63
.50
.50
.60
.60
.50
.50
.73
.73

ECONOMY OF SAND GRAVEI AGGREGATH. If the foregoing method of comparison is used it is apparent how erroneous conclusions may be arrived at. However, since concrete aggregates are purchased on a tonnage basis a real comparison of their cost should therefore be based upon the actual woight of material that is necessary for one cubic unit of concrete, in place. The following table shows the actual amount of aggregate per cubic foot of concrete for various mixtures of cement and aggregate and for different grades of material.

POUNDS OF AGGREGATE IN ONE CUBIC FOOT OF SAND AND GRAVET CONCRETE.
Aggregate Mix, Parts Approximate Pounds of Aggregate per Cubic Retained by Volume. Slump, Inches. Eoot of Concrete. on 10-mesh
Sieve.

10%	$1: 3$	1	97	101
10%	$1: 3$	6	96	97
10%	$1: 4$	1	102	105
10%	$1: 4$	1	100	102
10%	$1: 5$	6	104	106
10%	$1: 5$	1	102	101
10%	$1: 6$	6	104	104
10%	$1: 6$	1	104	102
10%	$1: 7$	$1: 7$	6	104
10%	$1: 7$	104	104	
			103	

Aggregate Mix, Parts Approximate Pounds of Aggregate per Cubic Retained by Volume. Slump, Inches. on lo-mesh Columbus. Platte Valley. Sieve.

20\%	1:3	1.		101
20\%	1:3	6		98
20\%	1:4	1		103
20\%	1:4	6		102
20\%	1:5	1		106
20\%	1:5	6		104
20\%	1:6	1		108
20\%	1:6	6		106
20\%	1:7	1		108
20\%	1:7	6		106
30\%	1:3	1	103	103
30\%	1:3	6	101	101
30\%	1:4	1	107	106
30\%	1:4	6	105	105
30\%	1:5	J.	110	108
30\%	1:5	6	108	106
30\%	1:6	1	111	109
30\%	1:6	6	111	108
30\%	1:7	1	112	109
30\%	1:7	6	111	108
40\%	1:3	1	106	105
40\%	1:3	6	103	104
40\%	1:4	1	110	109
40\%	1:4	6	109	107
40\%	1:5	1	114	112
40\%	1:5	6	111	111
40\%	1:6	1	114	115
40\%	1:6	6	112	112
40\%	1:7	1	116	116
40\%	1:7	6	114	114
50\%	1:3	1	107	110
50\%	1:3	6	106	106
50\%	1:4	1	111	114
50\%	1:4	6	110	110
50\%	1:5	1	116	116
50\%	1:5	6	114	114
50\%	1:6	1	119	115
50\%	1:6	6	117	114
50\%	1:7	1	120	115
50\%	1:7	6	118	114

POUNDS OF AGGREGATE IIN ONE CUBIC FOOT OF' SAND AND GRAVEI CONCRETE.
Aggregate Mix, Parts Approximate Pounds of Aggregate per Cubic Retained by Volume. Slump, Inches. on $10-$ mesh Sieve.

60%	$1: 3$	1	109	110
60%	$1: 3$	6	106	108
60%	$1: 4$	1	115	116
60%	$1: 4$	6	114	112
60%	$1: 5$	1	119	119
60%	$1: 5$	1	116	115
60%	$1: 6$	6	121	120
60%	$1: 6$	1	118	116
60%	$1: 7$	$1: 7$	6	126
60%	124	118		

POUNDS OF AGGREGATE IN ONE IUBIC FOOT OF BROKEN-STONE-SAND CONCRETE. Mix, Parts Approximate Pounds of Aggregate per Cubic Foot of Conby Volume. Slump, Inches. crete.

One Inch Broken Sand. Total Weight of Stone.

$1: 2: 3$	1
$1: 2: 3$	6
$1: 2: 3-1 / 2$	1
$1: 2: 3-1 / 2$	6
$1: 2: 4$	1
$1: 2: 4$	6
$1: 2-1 / 2: 4$	1
$1: 2-1 / 2: 4$	6
$1: 2-1 / 2: 5$	1
$1: 2-1 / 2: 5$	6
$1: 3: 5$	1
$1: 3: 5$	6
$1: 3: 6$	1
$1: 3: 6$	6
$1: 4: 5-1 / 2$	1
$1: 4: 5-1 / 2$	6

From an inspection of the foregoing tables it is seen that a $1: 14$ or $a \operatorname{l:5}$ sand-gravel concrete contains less aggregate than a I:2:4 broken-stone-sand concrete, and a $1: 5$ or a $1: 6$ sand-gravel concrete contains less aggregate than a $1: 3: 5$ or $1: 3: 6$ broken-stone-sand concrete, by weight. In other words, for concretes of equal strength there is actually less aggregate used when sand-gravel is used than when a combination of broken stone and sand is used.

QUANTITIES TO BE USED IN ESTIMATING. In estimating the amount of material which is necessary for aggregate the following blue prints were prepared. The quantities given are such that they include the amount of material, by weight, necessary for any mixture, due allowance being made for all losses which will normally occur.

 - majouge tomis
 $=$

- coubyel Mal int ! 1 Ehen)! 15 $[-+\quad=3$

84
815
315 182
37
48

Aggregote MX Pourds Necessary ta Onder for Each

Aggregote Fetained on 10-Mosh

Pound's Necessory to Arder for Eoch Cubic Foot of Concrete PLATTE VALLEY COLUMEUS Peinforced Pavement Reinforced Povement conorete bose

102	101
107	105
109	107
109	109
109	109
108	106
112	110
116	113
117	117
111	117
116	114
120	117
120	118
122	120
112	111
117	116
122	120
126	123
124	1211
127	120
122	130

QUANTITIES OF MATERIAL NECESSARY FOR CONCRETE MADE FROM NEBRASKA FINCH crushed Roci and pitrun sand TESTS MADE FOR
LYMAN-RICHEY SAND CO.
OMAHA NEBR.
WESTERN LABORATORIES LINCOLN, NEBR. MAR 3 I9Z2


```
Yield of Send-Gravel Combinations.
```

1. A small percentage of moisture may change the volume of sand-gravel to such an extent that it is increased as much as 30\% when measured met and loose as compared with the same material measured dry and compacted.
2. Specifications should always be so drawn as to stipulate exactly how much cement is required per unit volume of concrete, in place. This is absolutely necessary in order to be fair to both contracting parties, on contract work, and in order to have a definite and fair basis for checking the work.
3. The concrete yield is greater for sand-gravel than for an aggregate made up of one inch stone and sand.
4. The actual weight of aggregate in sand-gravel concrete is less than for concrete made from broken stone and sand, with corresponding strength.


```
                        *20
```


[^0]: PERGENT OF MOISTURE-BY WEIGHT

